
Vol.:(0123456789)

The Journal of Supercomputing

https://doi.org/10.1007/s11227-019-03097-w

1 3

GraphMap: scalable iterative graph processing using
NoSQL

Sayan Goswami1 · Ayam Pokhrel2 · Kisung Lee2 · Ling Liu3 · Qi Zhang4 ·

Yang Zhou5

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Despite having several distributed graph processing frameworks, scalable iterative

processing of large graphs is a challenging problem since the graph and intermedi-

ate data need a global view of the graph topology in distributed memory. Although

some systems support out-of-core iterative computations, they use a single machine

and often require fast storage. In this paper, we present a new distributed iterative

graph computation framework, called GraphMap, that utilizes a disk-based NoSQL

database system for scalable graph processing while ensuring competitive perfor-

mance. Extensive experiments on several real-world graphs show that GraphMap is

more scalable and often faster than existing distributed memory-based systems for

various graph processing workloads.

Keywords Graph processing · Distributed systems · NoSQL

1 Introduction

In this era of big data, various distributed big data systems, such as Apache Hadoop

and Spark, are processing a massive amount of information generated from hetero-

geneous data sources, including online social networks, smartphones, and Internet of

Things (IoT) devices such as smart light bulbs and thermostats, at an unprecedented

rate. Among various kinds of data, graph data are getting a lot of attention because

graphs are everywhere (e.g., online social networks, brain networks, transportation

 * Sayan Goswami

 sgoswami@lsus.edu

1 Louisiana State University, Shreveport, USA

2 Louisiana State University, Baton Rouge, USA

3 Georgia Institute of Technology, Atlanta, USA

4 IBM Thomas J. Watson Research Center, New York, USA

5 Auburn University, Auburn, USA

 S. Goswami et al.

1 3

networks) and, more importantly, people can get deeper insights into big data based

on the explicit and implicit relationships among real-world entities. For example,

in bioinformatics, scientists are building a De Bruijn graph or an overlap graph to

construct a whole genome sequence based on short reads generated from a next-

generation sequencing machine [9, 32].

Even though graph data are invaluable in most disciplines and applications, graph

data processing has several technical challenges that need to be addressed for effi-

cient large-scale graph-based analytics. First, the sizes of real-world graphs are

already huge and, more importantly, increasing at a tremendous rate. For example,

if we represent each social network user as a vertex, there are more than 2 billion

vertices in the friendship graph of Facebook [6]. Therefore, large-scale graph pro-

cessing requires massive computing and storage resources. To make matters worse,

most graph-based applications generate a huge amount of intermediate data, and the

size of the intermediate data is usually much larger (in some cases, several orders

of magnitude bigger) than the original input graph size. Secondly, graph data have

complicated relationships among data entities, and these relationships are essen-

tial for graph analytics to gain a deeper insight into big graph data. However, these

complex relationships make it hard to partition the graph data for distributed graph

data processing. Last but not the least, most real-world graph data have an extremely

skewed distribution in terms of the number of connected edges. In other words, most

real-world graphs have some vertices that have a huge number of connected edges.

These high-degree vertices make it hard to ensure load balancing during large-scale

graph data processing.

To address the challenges for efficient large-scale graph data processing, system

researchers have devoted much effort to the study of big graph systems in recent

years. Existing graph systems for iterative computations can be categorized into two

types based on their system architecture: 1) centralized disk-based systems and 2)

distributed memory-based systems. The disk-based systems on a single machine

(e.g., GraphChi [15], X-Stream [25], PathGraph [31], TurboGraph [10], Flash-

Graph [34], GraphTwist [35], Mosaic [20]) focus on maximizing parallelism among

computing cores and designing graph representations optimized for HDD or SSD

accesses. Even though they demonstrate significant performance improvements

for iterative graph computations on a single machine, they have limited scalabil-

ity because they are incapable of processing a graph whose computing and storage

requirements are bigger than the available resources on the single machine.

As for scalable solutions, several distributed memory-based systems on a cluster

of commodity servers (e.g., Pregel [21], Giraph [1], Hama [2], GraphLab [19], Pow-

erGraph [7], Giraph++ [27], GraphX [8], Pregelix [5]) have been developed. Even

though they are designed to handle larger graphs by adding more compute nodes

into the cluster, they heavily rely on distributed memory to store not only the entire

input graph but also all intermediate data and communication messages. In graph-

based applications, it is not uncommon that the size of the intermediate data is sev-

eral orders of magnitude bigger than the original input graph size. Furthermore,

since the input graph is partitioned and distributed among compute nodes, existing

systems can fail when the least powerful compute node on the cluster cannot accom-

modate its graph partition, all intermediate results, and communication messages in

1 3

GraphMap: scalable iterative graph processing using NoSQL

its main memory. Even though a few distributed systems, such as Giraph and Prege-

lix, support out-of-core computations to utilize external memory for processing

large graphs, these systems typically focus only on decreasing the memory footprint,

not on effectively utilizing the external memory for improving the performance of

iterative computations, or require native storage modules lacking in fault tolerance.

In this paper, we claim that well-designed out-of-core graph systems for iterative

computations can handle large-scale graphs while ensuring competitive performance

by effectively partitioning and accessing graph data based on data locality. Such sys-

tems will enable us to run iterative graph computations on large-scale graphs using

a small and affordable cluster (e.g., tens of nodes), instead of a huge and expensive

cluster (e.g., hundreds or thousands of nodes) that is required by most existing graph

systems to accommodate not only input graph data but also all intermediate results

in its distributed memory. To validate this claim, we present a new distributed itera-

tive graph computation framework, called GraphMap, that effectively utilizes a disk-

based NoSQL database system for scalable graph processing while ensuring com-

petitive performance.

GraphMap has four salient features for scalable and efficient iterative graph pro-

cessing. First, it separates read-only graph data from modifiable data to maximize

sequential accesses and minimize random disk accesses during iterative graph com-

putations. By holding modifiable data in memory and immutable data in a disk-

based NoSQL system, GraphMap can scale to large-scale graphs while demon-

strating competitive performance through optimized disk I/O. Second, GraphMap

is equipped with two-level graph data partitioning (inter-worker and intra-worker

partitioning) for locality-optimized data placement and balanced workloads. In the

inter-worker partitioning (level 1), vertices and their connected edges are parti-

tioned and distributed among compute nodes for balanced graph processing. In the

intra-worker partitioning (level 2), each level-1 partition is further split into smaller

chunks based on ranges to efficiently support not only sequential accesses but also

random accesses. Third, in the inter-worker partitioning, GraphMap supports vari-

ous graph partitioning techniques including hash- and mincut-based partitioning so

users can choose one based on their requirements and workloads. Lastly, GraphMap

implements a collection of locality-aware optimization techniques to further improve

the overall performance of iterative graph processing, including dynamic access pat-

terns based on the number of active vertices, locality-based disk block accesses,

partition-aware identifier assignments and message batching, and worker-partition

colocation. Through the proposed techniques, GraphMap can utilize the secondary

storage by reducing random disk I/O and demonstrate competitive performance for

various iterative algorithms. We compare the experimental results of GraphMap

generated using several real-world graphs for various iterative algorithms with those

of state-of-the-art distributed graph frameworks. The evaluation results demonstrate

not only the improved scalability of GraphMap but also competitive performance

compared to the existing in-memory systems.

The rest of the paper is organized as follows. We first summarize the related

works of this paper in Sect. 2. In Sect. 3, we provide a detailed overview of Graph-

Map’s design and architecture. We describe the data placement scheme used in

GraphMap in Sect. 4 and the locality-based dynamic optimization scheme in Sect. 5.

 S. Goswami et al.

1 3

In Sect. 6, we present a strategy to move computation to data to reduce the network

traffic. Lastly, we evaluate GraphMap in Sect. 7 and conclude the paper in Sect. 8.

2 Related works

Iterative graph algorithms have been studied extensively, and a number of graph

processing frameworks have been developed specifically for them. Most of these

frameworks can be broadly categorized into two groups. The first group is char-

acterized by in-memory distributed programs built for commodity clusters. These

frameworks [7, 8, 19, 21, 26] typically have to load entire graphs in memory so they

require huge memory for large-scale graphs. Apache Hama and Giraph are two of

the most popular examples built on the Pregel-like BSP paradigm with the “think

like a vertex” programming model. On the contrary, systems like GraphX [8] and

Pregelix [5] are implemented using a general-purpose distributed in-memory data-

flow network where the graphs are stored as tables so the algorithms take advantage

of database-style queries. Trinity [26] is another framework that utilizes a distributed

in-memory key-value store for storing graphs and intermediate data. GraphLab [19]

and PowerGraph [7] represent yet another type of distributed frameworks based on

the asynchronous communications. PowerGraph can also be used synchronously.

Although some frameworks such as Pregelix have out-of-core execution capabili-

ties built in them, they are not optimized for slow storage media, and their execu-

tion times can be prohibitively high when using external storage while running large

datasets.

The second group consists of disk-based standalone frameworks such as Graph-

Chi [15], X-Stream [25], and a few others [10, 31, 34], which focus on optimizing

performance of algorithms when the graphs are too large to fit in main memory.

However, these frameworks are not designed to run on clusters. GraphChi, which

is built on the “think like a vertex” model, divides the graph among several shards

and accesses them in parallel using a sliding-window model. On the other hand,

X-Stream uses an edge-centric model where the edges are partitioned and then

streamed in memory. Contrary to the ones mentioned before, PathGraph [31] uses

a path-centric approach that lets them utilize the access locality in both disk and

memory. Yet another group of frameworks including FlashGraph [34] and Turbo-

Graph [10] are designed to exploit the parallel I/O capabilities of SSDs. In addition,

there are several graph frameworks optimized for GPUs such as graph analytics on

multiple GPUs [23], Lux [12], and DiGraph [33].

Chaos [24] is another graph processing framework that uses secondary storage

over a distributed cluster. However, unlike GraphMap that is designed for commod-

ity clusters, Chaos does not handle fault tolerance and is not tailored to recover from

storage failures. Another aspect in which Chaos differs from GraphMap is that it

assumes the underlying network interconnects have a high bandwidth and does not

depend on locality of access. This is in contrast to GraphMap because we try to

extract as much locality as possible in order to reduce the dependency on the net-

work. Specifically, Chaos reports their results on a 40 GigE network while we evalu-

ate GraphMap on a 1 GigE network. In addition, for running Chaos on a distributed

1 3

GraphMap: scalable iterative graph processing using NoSQL

system, the end user is required to split the input into roughly equal parts and store

them on the different machines. GraphMap automatically handles this by effectively

utilizing a distributed file system and a NoSQL database system. GraphD [30] is a

newest out-of-core graph processing system. Unlike GraphMap, GraphD is not built

atop general-purpose tools such as HDFS and HBase, and hence it lacks several

important features for distributed computing such as fault tolerance.

A preliminary version of this paper appeared in [17]. In this extended version, we

have new contributions as follows. First, we newly propose and develop a worker-

partition colocation technique and experimentally demonstrate its benefits. Second,

we extend GraphMap to support other types of graph partitioning techniques in

addition to the hash-based partitioning, and so users can choose one based on the

characteristics of graphs and workloads. We implement minimum cut-based parti-

tioning in particular and experimentally compare its performance with that of hash-

based partitioning. Moreover, we report our experimental results using a new type of

compute nodes to show the effects of different machine specifications.

3 GraphMap overview

In this section, we first introduce the preliminaries of our design features and then

present an overview of the proposed framework, including the partitioning tech-

niques, programming model, and system architecture.

3.1 Preliminaries

In GraphMap, information networks are modeled as directed graphs, and undirected

edges are converted into directed edges having opposite directions.

Definition 1 (Graph) A graph G consists of a set of vertices (V
G

) and a set of

directed edges (E
G

) where E
G
⊆ V

G
× V

G
 . For an edge e = (u, v) ∈ E

G
 , u is called

the source vertex, and v is called the destination vertex. u and v have e as an out-

edge and in-edge, respectively. |V
G
| and |E

G
| mean the number of vertices and edges,

respectively.

Each vertex has a unique vertex identifier and a set of attributes that characterize

the properties of the vertex. In this paper, we interchangeably use the terms “attrib-

ute” and “state” of a vertex. If the edges have modifiable, user-defined values, we

model them as attributes of source vertices. This permits us to treat all vertices as

mutable data and edges as immutable data while processing the graphs.

The separation of mutable from immutable data lets GraphMap exploit a stor-

age scheme where the mutable vertex data are compactly placed in memory and the

immutable edge data are stored in a locality-aware fashion on disk. As most graphs

generally have much more edges than vertices (e.g., up to 100 times more edges in

datasets in Table 1), this scheme lets us significantly reduce the memory required to

load and process large graphs. In subsequent sections, we show that by using this

 S. Goswami et al.

1 3

clear separation between mutable and read-only components in a graph, we can sub-

stantially reduce random disk I/O for several iterative graph algorithms.

To optimize the access of edges in a graph, we categorize them into three classes

based on their relative direction to a vertex as follows.

Definition 2 (Out-edges, In-edges, and Bi-edges) In graph G, the out-edges of ver-

tex v ∈ V
G

 are defined as E
out

v
= {(v, v

�)|(v, v
�) ∈ E

G
} . Conversely, the in-edges

of v are defined as E
in

v
= {(v�, v)|(v�, v) ∈ E

G
} . The bi-edges of v are defined as

Ebi

v
= Eout

v
∪ Ein

v
 (i.e., the union of out-edges and in-edges).

For each vertex in the graph, we build a vertex block (VB) consisting of an

anchor vertex and the edges directly connected to it with their properties. Since

different iterative graph algorithms can have different computation characteristics,

GraphMap supports three kinds of VBs based on the edge direction from the anchor

vertex: out-edge vertex block (out-VB), in-edge vertex block (in-VB), and bi-edge

vertex block (bi-VB). An out-VB comprises of a source vertex and the adjacency list

of destination vertex IDs to which it has an out-edge. Similarly, an in-VB consists of

a destination vertex and the adjacency list of source vertex IDs from which it has an

in-edge. We formally define the concept of VBs as follows.

Definition 3 (Vertex block) In graph G, the out-edge vertex block of v ∈ V
G

is a 2-tuple that consists of v as its anchor vertex and the set of its out-edges,

defined as VB
out

v
= (Vout

v
, E

out

v
) such that V

out

v
= {v} ∪ {v

out|(v, v
out) ∈ E

out

v
} . Simi-

larly, the in-edge vertex block of v is denoted by VB
in

v
= (V in

v
, E

in

v
) such that

V
in

v
= {v} ∪ {v

in|(vin
, v) ∈ E

in

v
} . We define the bi-edge vertex block of v as

VBbi

v
= (Vbi

v
, Ebi

v
) such that Vbi

v
= V in

v
∪ Vout

v
.

Figure 1 depicts the ideas described above using an unweighted directed graph in

Fig. 1a. The numbers inside the vertices are the vertex identifiers (IDs). Figure 1b

(a) A sample graph (b) States and vertex blocks

Fig. 1 A sample graph, its set of vertex blocks and the states of the vertices at the convergence of the

single-source shortest path algorithm from vertex ID 0

1 3

GraphMap: scalable iterative graph processing using NoSQL

shows how the graph is conceptually represented in GraphMap. Each vertex has a

state that may change after each iteration. In this case, the state represents the dis-

tance from the source vertex with ID 0 at the end of the last iteration. The corre-

sponding in-edge VB and out-edge VB for each vertex are also shown in Fig. 1b.

These vertex blocks store the topology information of the graph in an adjacency-list

format. Note that if an algorithm does not use the incoming edge information for

sending the updated state of vertices (as in the case of the single-source shortest

path), it may be sufficient to store only the out-VB of a vertex.

3.2 Two‑level graph partitioning

GraphMap uses two-level graph data partitioning (inter-worker and intra-worker

partitioning) for locality-optimized data placement and balanced workloads. In the

inter-worker partitioning (level 1), the graph is partitioned using edge-cuts, and the

partitions are distributed among the compute nodes for balanced processing. A par-

tition is composed of vertices and their corresponding vertex blocks. While verti-

ces are stored in memory, their vertex blocks are stored in a distributed file system.

In the intra-worker partitioning (level 2), each level-1 partition is further split into

smaller chunks based on ranges to efficiently support not only sequential accesses

but also random accesses on the level-1 partition. This is done by sorting the vertex

blocks in each level-1 partition by their anchor vertex IDs and partitioning them into

smaller chunks based on ranges so that each chunk is indexed by its smallest and

largest vertex IDs. We perform the range-based intra-worker partitioning at all work-

ers in parallel.

Figure 2 depicts the partitioning scheme employed by GraphMap running on a

2-node cluster when applied to the sample graph in Fig. 1a. In the level-1 partition-

ing where the vertices are distributed among the compute nodes, vertices with IDs

0, 2, 4, and 6 are assigned to node 0 and the rest are assigned to node 1. The vertices

and their attributes are stored in memory as a 2-tuple. Next, in the level-2 partition-

ing where the VBs are sorted by their IDs and split into ranges, VBs corresponding

to vertices 0 and 2 are assigned to level-2 partition 0.0, and those corresponding to

vertices 4 and 6 are assigned to 0.1.

Fig. 2 GraphMap’s 2-level partitioning scheme

 S. Goswami et al.

1 3

In the inter-worker partitioning (level 1), GraphMap supports various graph par-

titioning techniques including hash- and mincut (minimum cut)-based partitioning

so users can choose one based on their requirements and workloads. By default,

GraphMap performs hash-based partitioning using the hash value of vertex IDs

and assign their vertex block (VB) to one of the worker machines corresponding to

the hash value. Hash-based partitioning is fast and lightweight because we do not

need to maintain any additional data structure for storing the partition ID of each

vertex. In addition to the hash-based partitioning, GraphMap also supports mincut-

based partitioning to assign close vertices (and their vertex blocks) into the same

partition. By using this locality-aware graph partitioning scheme, we can reduce the

amount of inter-partition communication because it is likely that two connected ver-

tices are located in the same worker machine. However, unlike the hash-based par-

titioning, this scheme requires a pre-processing step for minimum cut, and we also

need to store the mapping information between vertices and partitions. GraphMap

is designed to be equipped with other partitioning techniques such as SHAPE [16].

3.3 Supporting vertex‑centric API

A clear majority of the iterative graph processing frameworks adopt a vertex-centric

(“think like a vertex”) programming model [7, 19, 21]. The implementation of an

iterative graph algorithm (e.g., PageRank, single-source shortest path computations,

triangle counting) in the vertex-centric model requires the users to write a function

that defines what each vertex performs for each iteration of the algorithm. At every

iteration, all vertices of the graph run the same function in parallel. Each vertex typi-

cally performs three steps during an iteration. (1) It gathers the states of its neigh-

boring vertices, typically along its in-edges. (2) Depending on some user-defined

logic, it updates its value based on its current state and that of its neighboring ver-

tices. (3) If its status value is modified, it propagates the updated status value to its

neighboring vertices, typically along its out-edges.

Every vertex is in one of two states during the lifetime of the program—active

or inactive. During an iteration, only those vertices that are in an active state can

execute the vertex program. The number of active vertices varies between the dif-

ferent classes of algorithms as well as from iteration to iteration within the same

algorithm. For instance, all vertices are active in PageRank during all the iterations

whereas, in case of connected components (CC), the percentage of active vertices

starts from 100% and tends toward 0% as the program advances. In case of single-

source shortest path (SSSP), the number of active vertices at a particular iteration

may vary even within the same graph depending on the choice of the source vertex.

A vertex can deactivate itself, typically at the end of an iteration, but can be reacti-

vated through messages from other vertices. The program terminates when either all

vertices become inactive or it satisfies a predefined condition for convergence (e.g.,

the number of iterations).

Most of the existing distributed vertex-centric graph processing frameworks are

based on the Bulk Synchronous Parallel (BSP) [28] model of computation designed

for shared-nothing architectures. Applications based on the BSP model typically

1 3

GraphMap: scalable iterative graph processing using NoSQL

start with an initialization step in which the input graph is read and scattered across

the cluster nodes. In each subsequent iteration, worker processes execute the user

program in parallel and independent of each other. At the end of each iteration, the

workers perform a global barrier synchronization during which they communi-

cate with each other to merge their results with those of their peers. Since vertices

communicating with each other may reside on different machines, most distributed

graph processing frameworks provide some mechanism of interaction between ver-

tices, usually along their edges. For instance, Pregel [21] operates in a pure message

passing model in which vertices send messages along their outgoing edges at the

end of an iteration. During iteration i, each vertex processes all incoming messages

received during iteration i − 1 . On the other hand, in GraphLab/PowerGraph [7,

19], vertices can directly access the data within their neighboring vertices through

a shared state.

Algorithm 1 shows pseudo-code for a SSSP program based on the vertex-centric

and BSP model. At the very first iteration (also known as superstep), each vertex ini-

tializes its value with infinity (line 2). In the following iterations, each vertex updates

its value using the smallest value of all the incoming messages (line 4) and its own

previous value (lines 5, 6) and broadcasts the updated value to all its neighboring

vertices along its out-edges (line 7). At the end of each iteration, the vertex changes

its status to inactive (line 9) and will be reactivated again in subsequent iterations if

it gets incoming messages from other vertices. To minimize the volume of messages

transferred over the network, we often create a combiner that merges the messages

bound for a particular destination (lines 11–12).

3.4 GraphMap system architecture

Figure 3 shows the architectural overview of GraphMap. It is built on the BSP com-

putation paradigm using the message passing model.

The system consists of a master node and a set of worker nodes. The master

node is responsible for accepting user requests and coordinating with the worker

 S. Goswami et al.

1 3

machines. The worker nodes synchronize and communicate with each other through

messages.

For a task-level parallelism, every worker node has multiple slots for running

worker tasks, and each of which is assigned a single partition. The worker tasks keep

the mutable vertex data in memory and update them at every iteration by reading the

immutable VBs from disk. To store VBs on disk, GraphMap utilizes HBase, a disk-

based NoSQL database system (further explained in Sect. 4). Additionally, worker

tasks communicate between themselves with the help of a messaging engine that is

responsible for coalescing messages sent to the same worker. A global barrier syn-

chronization is performed by the workers at the end of every iteration with the help

of a BSP engine. Moreover, GraphMap is equipped with an optimization scheme

that dynamically switches between sequential and random accesses at every iteration

depending on the computation patterns at each GraphMap worker (further explained

in Sect. 5). GraphMap also provides a worker-partition colocation technique that

allows workers to process partitions that reside in the same machine for reducing the

amount of data transferred through the network (further explained in Sect. 6).

4 Locality‑aware data storage

This section introduces the storage scheme that GraphMap uses to exploit the local-

ity in graph datasets. As mentioned before, most of the iterative graph algorithms

only modify the vertex state whereas the edges remain unchanged throughout the

entire computation. Thus, through a clean separation between the mutable and

immutable parts of the graph, we can keep most or all of the mutable data in mem-

ory and access the immutable data from disk thereby minimizing non-sequential

I/O. Contrary to the existing distributed BSP-based frameworks where workers store

the entire graph as well as the intermediate data in memory, GraphMap judiciously

integrates secondary storage in memory-intensive graph algorithms.

Fig. 3 GraphMap system architecture

1 3

GraphMap: scalable iterative graph processing using NoSQL

Figure 4 depicts GraphMap’s storage scheme. The anchor vertices and their

data are stored in a vertex data map in memory. The disk contains the correspond-

ing vertex blocks automatically sorted by HBase and split in multiple ranges (two

ranges in Fig. 4), which are then indexed in a region-index block. Lastly, incom-

ing and outgoing messages are buffered in in-memory queues so that they can be

delivered to their targets at the end of each iteration.

More specifically, GraphMap stores all anchor vertices along with their states

in memory whereas their vertex blocks consisting of the edges along with their

properties (such as edge weights) are maintained on disk. The advantages of this

storage scheme are twofold: (1) By storing only the mutable data in memory and

consequently reducing the memory requirement, we can process larger graphs

using fewer nodes, and; (2) By storing the vertex blocks belonging to the same

partition in contiguous locations on disk, we can access the immutable data using

sequential accesses thereby improving I/O performance. Since most graphs have

a much higher number of edges than that of vertices, and their degree distribution

is often very skewed, representing the edges as immutable data and storing them

on disk reduces the memory required to load the graph.

The mutable vertex data are stored in a mapping table in memory and is used

to update the values of anchor vertices. For instance, in case of SSSP, the map-

ping table stores the current minimum distance of each vertex from the source.

Likewise, in case of PageRank, it stores the current rank of each vertex. For the

immutable edge data that are stored in the vertex blocks of anchor vertices, there

are two types of access characteristics that we exploit to reduce the cost of read-

ing them from disk in every iteration:

1. Edge access locality—edges of a vertex are accessed together to modify its state.

Fig. 4 Storage scheme in GraphMap (single worker)

 S. Goswami et al.

1 3

2. Vertex access locality—the same anchor vertices are accessed by a worker in

every iteration.

The edge access locality is utilized by packing all edges of a vertex into a single

vertex block. On the other hand, the vertex access locality is used by storing the ver-

tex blocks of all anchor vertices belonging to a partition in contiguous locations on

disk, allowing the worker to read them sequentially at each iteration. Moreover, to

improve the performance of random accesses, the vertex blocks are sorted by their

anchor vertex identifiers and indexed by storing them in regions and retaining the

addresses of the first vertex block of each region.

5 Locality‑based optimizations

Although the storage scheme used in GraphMap is designed to minimize non-

sequential I/O on slower storage media commonly found in commodity clusters, we

keep in mind that there exists a class of graph algorithms where the data access pat-

terns do not comply with only sequential reads/writes. A consequence of this can be

observed in Fig. 5, which shows the number of active vertices in a partition of the

Orkut graph [22] at every iteration during the execution of three algorithms—SSSP,

CC, and PageRank. In case of algorithms like PageRank where all the vertices are

active during every iteration, the sequential access pattern used to read the vertex

blocks from disk would be the most efficient option. On the other hand, in algo-

rithms similar to CC and SSSP where the number of active vertices may exhibit

large variations between iterations, sequential access at every iteration may not be

ideal especially during the ones in which only a few vertices are active and yet all

the vertex blocks must be read from disk.

Based on this observation, we propose an optimization scheme that dynamically

switches between sequential and random accesses at every iteration depending on

the computation patterns at each GraphMap worker. This adaptation not only lets us

gradually filter out the non-active vertices at every iteration but also avoids unneces-

sary disk accesses. Recall that on disk, the vertex blocks are sorted by their anchor

vertex identifiers and are indexed into regions for efficient random accesses. Dur-

ing an iteration, if the number of active vertices is less than a system-defined (and

Fig. 5 The number of active

vertices at each iteration

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

#
 a

ct
iv

e
v
er

ti
ce

s
(x

1
0
0
0

)

Iteration

SSSP CC PageRank

1 3

GraphMap: scalable iterative graph processing using NoSQL

user-modifiable) threshold � , the vertex blocks are read with random accesses using

the index block, which is cached in main memory. Since the index block contains

the first vertex ID and the address of each region, when querying for a vertex v

belonging to some partition p, we consult the index block of p and obtain the region

b
i
 such that the vertex ID of v is greater or equal to that of the first vertex at b

i
 but

less than the first vertex ID at b
i+1

 . Thus, we can perform a scan on the region b
i
 to

find the vertex block of v. When the number of active vertices is greater or equal to

� , we read all vertex blocks sequentially irrespective of whether the corresponding

vertex is active or not.

Since disk access latency can vary widely across clusters and even within the

same cluster, the threshold � dynamically adapts itself on each worker node. At

every iteration, we compare the latency of sequential and random disk accesses and

calculate the number of vertices (i.e., �) such that the total time required to randomly

access � vertex blocks is equal to the time required to sequentially access all vertex

blocks in a partition. Specifically, we determine the value of � as follows. Let �
iw

 ,

s
iw

 , r
iw

 , and a
iw

 denote the threshold, the total time required to sequentially read all

VBs, the total time required to randomly access all active VBs, and the total number

of vertices that are active on worker w during iteration i, respectively. The thresh-

old before the start of the first iteration �
0w

 is obtained empirically as described

before. We define m and n (m, n ∈ ℤ
≥0) to store the IDs of latest iteration where

vertex blocks were read using a sequential access (range scan) and random accesses,

respectively. Before the start of each iteration i (i ∈ ℤ
>0

), we update the threshold

using the following rule.

6 Moving computation to data

In GraphMap, each partition of the graph is assigned to a worker, and the number

of workers launched by the master equals the number of partitions. Each partition

is composed of anchor vertices, their states, and their vertex blocks. All vertices

(and their states) belonging to a partition reside in the memory of the same com-

pute node as the worker assigned to the partition. However, since the corresponding

vertex blocks are stored in a distributed file system, the workers are oblivious of

the physical locations of the vertex blocks. This is useful when the cluster contains

dedicated storage servers underneath the distributed file system, which are differ-

ent from the compute nodes. However, in situations where the local disks in com-

pute nodes are used to make up the distributed file system (as is commonly done in

HDFS), the storage transparency has the unintended consequence that the anchor

vertices and their VBs may physically reside on different machines. In such cases,

the workers have to fetch the vertex blocks corresponding to the anchor vertices in

the partition assigned to it from a remote node at every iteration before processing

can commence. On commodity clusters where the nodes may not be connected by

�
iw
=

{

�(i−1)w, if m = 0 or n = 0

s
mw

a
nw

r
nw

, otherwise.

 S. Goswami et al.

1 3

high-speed networks, these data migrations can have a significant impact on the total

execution times.

In order to avoid this network overhead in GraphMap, we move the computation

toward the data instead of the other way around. Ideally, this would imply that each

worker will process a partition that resides on the same machine. However, the dif-

ficulty in this approach is presented by the location transparency of the underlying

distributed storage system, which abstracts the low-level details from the workers.

To get around this impediment, we partition the graph and store the partitions in a

distributed NoSQL database in a way that each partition (both vertices and vertex

blocks) is completely contained in a single node. We also maintain a globally acces-

sible data structure (distributed in-memory key-value store), which stores the loca-

tions of the individual partitions. The NoSQL database is split in such a way that the

number of regions equals the number of graph partitions (and the number of Graph-

Map workers), and the regions are distributed among the nodes in the cluster. When

the partitions are loaded into the database, each of them is uniquely mapped to a

single region in the database, and the mapping information is stored in the global

key-value store.

During the iterative graph processing stage, when the GraphMap master launches

its workers, each worker consults the key-value store to find out the list of parti-

tions residing it its node and selects one that has not yet been selected by its peers

running on the same node. Next, workers update the store with 2-tuples consisting

of their worker IDs and their assigned partition IDs, and this information is used in

later stages to facilitate inter-worker message passing. Throughout the entire life-

time of the graph algorithm, a worker continues to work on the same local partition,

hence the step of selecting a partition and transmitting the mapping information to

the peers is a one-time process. Moreover, this scheme limits the network traffic to

relatively smaller mutable vertex data that are maintained in memory as opposed to

the much larger immutable edge data that have to be accessed from disk.

It is worth noting that, to ensure fault tolerance and provide a higher throughput,

it is likely that the distributed file system will replicate the partitions into multiple

nodes. Besides, workers can only interact with the database using its APIs and have

no control on the physical location from where a partition is fetched. Still, it is fair to

assume that, if a partition is present in the same node as the worker requesting it, the

database will try to use the local copy before it decides to fetch a remote one unless

working with the remote copy is faster due to issues such as disk contention at the

local node.

7 Experimental evaluation

This section presents an experimental analysis of GraphMap using various itera-

tive algorithms on real graph datasets of different sizes. We begin by explaining the

characteristics of the graphs used for evaluating GraphMap. Next, we perform a set

of experiments that can be classified into six categories: (1) We show the execution

times of GraphMap for several iterative graph algorithms and compare them with

those of a Pregel-like system; (2) We show the performance improvement incurred

1 3

GraphMap: scalable iterative graph processing using NoSQL

by moving the computation closer to data; (3) We present the consequences of the

dynamic access scheme when applied to the different datasets; (4) We demonstrate

GraphMap’s scalability on different cluster configurations; (5) We show the effi-

ciency of the hash-based global partitioning scheme by comparing execution times

of several algorithms after partitioning the graph using hash-based and minimum

cut-based scheme, and; (6) We compare GraphMap against other state-of-the-art

graph processing frameworks.

7.1 Datasets and iterative graph algorithms

To evaluate GraphMap, we use several real-world graph datasets of different sizes,

as summarized in Table 1. The experiments are performed using three classes of

iterative graph algorithms to adequately examine the various computation and com-

munication characteristics shown in Fig. 5. The first category of algorithms is illus-

trated using PageRank where all vertices are active throughout all the iterations in

the algorithm. The second category is illustrated using Connected Components (CC)

where the ratio of active vertices to the total number of vertices is close to 1 during

the first few iterations but quickly becomes close to 0 as the algorithm approaches

convergence. The final type is illustrated using Single-Source Shortest Path (SSSP)

where most vertices are inactive during the first and last few iterations and about

half of them are active during the intermediate ones.

7.2 Setup and implementation

The testbed we use to evaluate GraphMap consists of a cluster of 21 nodes (1 master

and 20 workers) on Emulab [29] in which we consider two types of nodes. The first

type (d710) is equipped with 12 GB RAM, one quad-core Intel Xeon E5530 proces-

sor, and two 7200 rpm SATA disks (500 GB and 250 GB). They run CentOS 5.5 and

are connected to each other with a 1 Gbps Ethernet network. The second type (d430)

has 64 GB RAM, two 8-core Intel Xeon E5-2630 processors with two threads per

core, and a 162 GB local hard drive. It has access to network-mounted storage but

was not used in our experiments. Each worker machine runs three JVM processes,

each with a maximum heap size of 3 GB and 16.5 GB in the d710 and d430 nodes,

respectively, unless stated otherwise.

Table 1 Graph datasets for

evaluation
Graph # Vertices # Edges

hollywood-2011 [4] 2.2 M 229 M

orkut [22] 3.1 M 224 M

cit-Patents [18] 3.8 M 16.5 M

soc-LiveJournal1 [3] 4.8 M 69 M

uk-2005 [4] 39 M 936 M

twitter [14] 42 M 1.5 B

 S. Goswami et al.

1 3

GraphMap utilizes the BSP and messaging modules of Apache Hama (version

0.6.3), an open source implementation of Pregel, so in view of fairness, we directly

compare the performance of GraphMap with Hama. The vertex blocks are repre-

sented as key-value pairs and stored on disk using Apache HBase (Version 0.96),

which is an open source wide-column key-value store running on Apache Hadoop’s

(Version 1.0.4) Distributed File System (HDFS). There are multiple reasons for

choosing HBase as the underlying NoSQL database. Firstly, HBase on top of HDFS

provides replication and fault tolerance, which aligns with GraphMap’s philosophy

of running on cheaper commodity clusters. Secondly, HBase is well suited for both

non-sequential and sequential accesses of vertex blocks since it indexes the keys on

disk by sorting them using a log-structured merge (LSM) tree. This implies that a

chunk of adjacent keys is stored contiguously in the same block in HDFS, which can

be read sequentially using a range-scan operation. Lastly, HBase tables can be split

into regions where the key-value pairs in the same region will be stored in the same

machine (or in a single region server in HBase terms). Therefore, if each partition in

the graph can be mapped to an HBase region, the VBs in it will be stored in a single

node. This makes it convenient to partition the graph globally since we can rename

the vertex identifiers in a way that they can be mapped to one of the regions. Specifi-

cally, when we perform the inter-worker partitioning (level 1), we create one HBase

table that is pre-split into regions, one for each level-1 partition. For the intra-worker

partitioning (level 2), we combine the level-1 partition ID with the vertex ID as an

HBase key to store all vertex blocks belong to the same level-1 partition together,

sorted by their vertex IDs. Thus, both the layers of our two-level partitioning scheme

are on top of HBase—first by distributing vertices to different regions according to

their assigned partition ID (inter-worker partitioning) and then sorting and indexing

the keys on each region (intra-worker partitioning).

7.3 Iterative graph computations

Since GraphMap uses the Hama’s BSP engine, we compare the total execution times

of both frameworks in Table 2 using the algorithms and datasets mentioned earlier.

Table 2 Total execution time of GraphMap compared to that of Apache Hama on d430 nodes

*Failed because of out of memory

Datasets Total execution time (s)

SSSP CC PageRank

Hama GraphMap Hama GraphMap Hama GraphMap

hollywood-2011 75.690 11.732 (6.5 ×) 90.698 23.709 (3.8 ×) 135.771 35.711 (3.8 ×)

orkut 36.664 11.737 (3.1 ×) 60.653 23.744 (2.6 ×) 81.963 35.759 (2.3 ×)

cit-Patents 15.622 8.747 (1.8 ×) 15.638 8.706 (1.8 ×) 24.769 14.747 (1.7 ×)

soc-LiveJournal1 30.688 11.755 (2.6 ×) 42.636 20.745 (2.1 ×) 54.690 26.769 (2.0 ×)

uk-2005 * 59.743 * 302.914 * 215.899

twitter * 74.838 * 167.938 * 420.051

1 3

GraphMap: scalable iterative graph processing using NoSQL

In case of SSSP, for each of the datasets except uk-2005, the vertex with the largest

number of outgoing edges is chosen as the source vertex. For uk-2005, we choose

the one with the third highest out-degree since only about 0.01% are reachable from

the first two. In case of PageRank, we set the termination condition to ten iterations.

The execution times reported in Table 2 are obtained from the fastest of five runs,

clearing the cache before each run, and we also report their variation in Table 3.

It is evident from the results that not only does GraphMap consistently outper-

form Hama in all the algorithms on all the datasets, but is also more memory effi-

cient than Hama. Even for the smaller datasets such as cit-patents and soc-LiveJour-

nal1 having 16.5 and 69 million edges, respectively, GraphMap is about twice as fast

as Hama. The performance gap widens with an increase in the number of edges as

seen in the cases of orkut and hollywood-2011 datasets with 224 and 229 million

edges, respectively. This can be observed especially in case of SSSP where Graph-

Map is about 6 times faster than Hama. The most noteworthy results are in the cases

of the uk-2005 (936 million edges) and twitter (1.5 billion edges) datasets where

Hama fails to execute altogether. This demonstrates the impact of the memory and

I/O efficient elements used in designing GraphMap.

For a more fine-grained examination of the difference in execution times between

Hama and GraphMap, we have broken down and analyzed each individual iteration in

both frameworks while running PageRank on the Orkut dataset. The time spent by a

worker during an iteration was split into two parts—time taken for processing and for

synchronization. The processing time is the total time taken by vertices to process mes-

sages received in the previous iteration, update their state by running the user program,

and queue outgoing messages. In case of GraphMap, the processing time also includes

the HBase access time. On the other hand, the synchronization time comprises of the

time spent waiting for other nodes to synchronize as well as the time taken for transfer-

ring messages to peers. We observed that the average processing time of all workers in

case of Hama was consistently about twice as long as that of GraphMap in every itera-

tion of PageRank (the closest one being 1.7 ×). On the other hand, the average synchro-

nization time of workers in Hama was 2.5 × to 3.7 × longer than that of GraphMap.

On the whole, each iteration of Hama was about 2.2 to 2.5 times slower than that of

GraphMap. Note that, even though Hama stores all its edge data in memory, its vertex

Table 3 Maximum, mean, and standard deviation of five runtimes of GraphMap for various algorithms

and datasets on d430 nodes

Datasets SSSP CC PageRank

Max Avg StDev Max Avg StDev Max Avg StDev

hollywood-2011 11.81 11.77 0.03 23.80 23.77 0.04 35.82 35.78 0.04

orkut 11.83 11.80 0.04 26.74 24.37 1.32 35.88 35.81 0.05

cit-Patents 8.83 8.79 0.04 8.83 8.78 0.05 14.78 14.76 0.01

soc-LiveJournal1 11.84 11.80 0.03 20.86 20.79 0.05 26.82 26.79 0.02

uk-2005 62.86 61.62 1.68 312.04 308.40 3.95 227.92 220.71 6.57

twitter 77.85 76.08 1.62 188.83 175.71 8.61 447.04 430.86 11.35

 S. Goswami et al.

1 3

processing time was longer than that of GraphMap, which has to access the disk at each

iteration. Even though this might seem counter-intuitive at first, this is expected since

HBase utilizes a block cache, which keeps a data-block resident in memory even after

its read. This is done so that adjacent records that reside in the same block can be read

without multiple disk accesses, thereby improving sequential access performance. This

reaffirms the validity of GraphMap’s data layout and the choice of HBase for imple-

menting it.

Figure 6 offers a closer look at the iterations in GraphMap to show how long the

different components take in the different classes of algorithms on the uk-2005 data-

set. Note that the time taken to update the vertex is relatively small compared to the

other components. This is because the execution time is dominated by disk accesses.

In case of PageRank, since all vertices are active, each worker executes the vertex pro-

gram the same number of times and processes the same number of messages at every

iteration (except the first and the last one). Moreover, since messages are passed along

every edge in the graph, there are a lot of inter-worker messages, which increases the

synchronization time. In case of SSSP and CC, the number of active vertices differs

between iterations and so does the HBase access time. However, depending on the

number of active vertices, GraphMap decides to perform sequential reads (iterating

over range-scans), which is what happens from iterations 5 through 15 in SSSP. This is

evident from the fact that the total disk access times in those iterations are similar even

though the vertex update times vary.

7.4 Effects of worker‑partition colocation

Table 4 demonstrates the performance improvements that result from the colocation

of data and workers in GraphMap. On small datasets such as cit-Patents and orkut, we

do not observe much improvement in performance with colocation, and for some algo-

rithms such as SSSP and CC, we even notice a deterioration in the execution times.

This is because, when the partitions are small, the overhead of fetching the locations of

partitions for colocating workers is non-negligible compared to the time taken to fetch

and process the partitions from remote peers.

However, as the size of the data (and also the partitions) increases, the access local-

ity starts to yield noticeable performance improvements. For instance, in case of twitter

and uk-2005 graphs, we can observe that for algorithms such as SSSP and CC which

require a large number of iterations, the execution times with worker-data colocation

are about 1.5 to 2 times faster than those without it.

The efficiency of worker-partition colocation is reinforced by the difference in net-

work traffic per node per iteration in the two scenarios as shown in Table 5. Depending

on the graph algorithm and the dataset, this scheme reduces the network traffic by up to

an order of magnitude, with the highest performance gain in case of graphs containing

a large number of edges.

1 3

GraphMap: scalable iterative graph processing using NoSQL

7.5 Effects of dynamic access methods

To evaluate the impact incurred by dynamically switching between sequential and

random disk accesses, we compare the execution times of GraphMap for the CC

and SSSP algorithms with two baseline results using only sequential and only

random accesses as shown in Fig. 7. We do not include PageRank in the study

since all vertices remain active during every iteration of PageRank, and therefore

sequential access always performs the best. We can see that using the dynamic

Fig. 6 Breakdown of execution

time per iteration (average per

worker)

 S. Goswami et al.

1 3

access type yields the best performance compared to the baselines since it makes

a more informed decision on how to read data from the disk based on the hard-

ware performance as well as algorithmic characteristics.

Table 4 Execution time (in seconds) of algorithms on different datasets with and without worker-data

colocation

Datasets SSSP CC PageRank

Colocated Dispersed Colocated Dispersed Colocated Dispersed

cit-Patents 8.747 6.407 8.706 6.405 14.747 15.404

soc-LiveJournal1 11.755 15.347 20.745 21.406 26.769 30.377

orkut 11.737 15.411 23.744 24.466 35.759 42.421

hollywood-2011 11.732 12.409 23.709 27.418 35.711 69.428

uk-2005 59.743 123.547 302.914 433.063 215.899 336.648

twitter 74.838 114.5 167.938 225.587 420.051 705.801

Table 5 Average data transferred (in MB) per node per iteration and the number of iterations (Iter) in

various algorithms on different datasets with and without worker-data colocation (Col and Disp, respec-

tively)

Datasets SSSP CC PageRank

Iter Col Disp Iter Col Disp Iter Col Disp

cit-Patents 15 0.32 0.42 13 1.25 2.22 10 6.41 19.21

soc-LiveJournal1 16 1.80 12.68 17 6.06 22.26 10 16.92 51.25

orkut 17 2.19 17.06 10 15.43 45.32 10 24.77 75.44

hollywood-2011 11 3.37 26.98 14 10.05 51.78 10 22.45 105.84

uk-2005 198 1.16 26.70 203 10.13 63.65 10 128.52 577.82

twitter 15 17.82 217.10 48 13.16 90.96 10 170.73 915.93

Fig. 7 Normalized execution times using different access schemes

1 3

GraphMap: scalable iterative graph processing using NoSQL

We can also observe from Fig. 7 that, in case of cit-Patents, the vertex blocks

are accessed in a random pattern in all the iterations as opposed to a full sequen-

tial scan because only a tiny fraction of the vertices is active throughout the com-

putation. We can also witness a huge performance gain (about 8 ×) for SSSP on

uk-2005 compared to the baseline using only sequential accesses because it has a

large number of iterations (198 iterations) until it converges, and most iterations

have only a few active vertices.

Figure 8 presents a more fine-grained analysis of the dynamic access on a

worker with the uk-2005 dataset (iterations 0–40). We can see that the choice of

access type corresponds to the number of active vertices for most iterations. An

interesting observation here is that in iterations 5 and 15, even though random

accesses are faster, GraphMap selects the full sequential scan, which signifies that

there is still room for improvement. One way this can be done is by fine-tuning

the value of � , which was set to 2% for all experiments performed.

7.6 Scalability

In this part of the evaluation, we begin by demonstrating GraphMap’s scalability

in Table 6 by running SSSP on all the datasets using different worker configu-

rations. We perform three sets of experiments, each time changing the number

of workers (60, 120 and 180) but keeping the heap size the same (1 GB). As

expected, GraphMap requires less memory than Hama and can process the input

graph using fewer workers. Increasing the number of workers decreases the sizes

of the partitions and consequently the number of active vertices handled by each

worker. This is shown in Fig. 9a, b. However, an increase in the number of work-

ers will incur a higher inter-worker communication cost especially on commodity

clusters with slower network interconnects, resulting in diminished performance

improvements. As shown in Fig. 9c, d, if we raise the number of workers, the

vertex update time decreases but at the cost of longer synchronization time for

coordinating more workers.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

)

Iteration

GraphMap-Sequential-IO

GraphMap-Random-IO

GraphMap-Adaptive-IO

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0

0
0

)

Iteration

(a) Computation Time (b) #active vertices

Fig. 8 Effects of dynamic access methods

 S. Goswami et al.

1 3

7.7 Effects of partitioning scheme on performance

In the following set of experiments, we demonstrate the efficiency of hash-based

partitioning scheme used in GraphMap by comparing it against the performance

of minimum cut-based partitioning. For the minimum cut-based partitioning, we

use Metis [13] to find the minimum edge-cuts in our graphs and then distribute the

resulting partitions among GraphMap workers. For the hash-based partitioning, we

assign vertices to workers based on the result of hashing their vertex identifiers.

Next, we run the various graph algorithms on both partition assignments and gather

the execution times and the total number of messages sent by all workers to their

peers (both local and remote) as shown in Tables 7 and 8 respectively. Note that we

do not use the worker-partition colocation during these experiments to isolate the

effect of inter-node messages on the total execution times.

As expected, the number of messages in the graph partitioned using minimum

cuts is much smaller (up to 8 times) than that using hash-based partitioning because

connected vertices are typically assigned to the same partition. However, we observe

that, for most of the datasets, the minimum cut-based partitioning scheme provides

no improvement in execution times. For some algorithms (e.g., PageRank on twit-

ter), the minimum cut-based partitioning scheme is even slower (by about four

times) than the hash-based one. Note that the execution time does not include the

time taken to calculate the minimum cuts using Metis.

The reason behind the diminished performance when using mincut-based parti-

tioning lies in the degree distribution and small-world property of real-world graphs

combined with the bulk synchronous nature of GraphMap. More specifically, while

trying to reduce the number of edges across partitions, the mincut-based partition-

ing may inadvertently assign two connected hubs (i.e., vertices with a large number

Table 6 Scalability of Hama

versus GraphMap with SSSP on

d430 machines

*Failed because of out of memory

Total execution time (sec)

Dataset Framework #Workers

60 120 180

hollywood-2011 Hama 75.690 48.721 54.729

GraphMap 12.383 12.399 12.393

orkut Hama 36.664 33.688 45.705

GraphMap 15.395 12.474 15.375

cit-Patents Hama 15.622 18.683 24.724

GraphMap 9.388 9.429 12.407

soc-LiveJournal1 Hama 30.688 33.714 42.753

GraphMap 15.371 12.415 12.427

uk-2005 Hama * * 201.955

GraphMap 78.426 45.464 42.463

twitter Hama * * *

GraphMap 81.438 57.447 48.476

1 3

GraphMap: scalable iterative graph processing using NoSQL

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0
0
0
)

Iteration

60 workers

120 workers

180 workers

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 1011121314151617181920N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0
0
0
)

Iteration

60 workers

120 workers

180 workers

(a) #active vertices (orkut) (b) #active vertices (uk-2005)

(c) computation time (orkut)

(d) computation time (uk-2005)

Fig. 9 Scalability (varying #workers)

 S. Goswami et al.

1 3

of edges) to the same partition. This means that a few partitions can have a much

higher number of edges than the rest and may need to process a much larger num-

ber of messages per iteration. This can be observed in Fig. 10, which depicts the

skewness in the edge distribution for the three largest datasets across a fixed number

of partitions (60) for both partitioning schemes. In a bulk synchronous processing

model where all workers must synchronize before every iteration, the execution time

for each iteration is determined by the workers taking the longest processing time.

Therefore, when the number of edges is skewed, the execution time of an iteration is

dominated by the worker processing the partition containing the largest number of

edges.

7.8 Comparison with state‑of‑the‑art systems

In this part, we evaluate GraphMap’s performance against the popular distributed

graph processing frameworks such as Hama, GraphX, PowerGraph (GraphLab 2.2),

Giraph, and Giraph++, as shown in Table 9. For the comparisons, we show the

results of running CC and PageRank on two of the largest datasets, twitter and uk

Table 7 Effects of various partitioning schemes on total execution time (d430 nodes without the worker-

partition colocation)

Datasets SSSP CC PageRank

Mincut Hash Mincut Hash Mincut Hash

hollywood-2011 24.419 12.409 63.485 27.418 111.51 42.811

orkut 21.418 15.411 39.427 24.466 69.453 39.818

cit-Patents 9.447 6.407 7.231 6.405 18.378 18.632

soc-LiveJournal1 15.415 15.347 24.391 21.406 39.427 33.408

uk-2005 204.561 123.547 517.255 433.063 280.266 229.351

twitter 354.681 114.5 694.493 225.587 2060.011 531.716

Table 8 Average number of messages transferred between all workers (running on same or different

compute nodes) per iteration in various algorithms on different datasets with mincut and hash-based par-

titioning

Datasets SSSP CC PageRank

Mincut Hash Mincut Hash Mincut Hash

hollywood-2011 1.40M 7.30M 4.35M 24.87M 10.23M 56.05M

orkut 1.65M 4.58M 11.49M 38.56M 18.42M 62.11M

cit-Patents 11.87K 14.07K 0.39M 1.16M 4.527M 13.487M

soc-LiveJournal1 2.90M 3.20M 12.68M 14.28M 36.08M 40.36M

uk-2005 0.37M 2.25M 3.26M 25.41M 37.68M 308.3M

twitter 18.90M 39.01M 13.57M 31.17M 174.1M 422.0M

1 3

GraphMap: scalable iterative graph processing using NoSQL

datasets. To prevent the effects of our sub-optimal system configurations, we adopt

the results reported in literature [8, 31]. Moreover, since Chaos [24] reports normal-

ized runtimes, we use the ones reported by GraphD [30]. The results are annotated

with the hardware configurations used to generate them.

The results provide some interesting observations. Firstly, the other frameworks

were evaluated on clusters with larger aggregate main memory and processing

Fig. 10 Distribution of total number of incoming and outgoing edges per partition

S. G

o
sw

am
i et al.

1
 3

Table 9 Comparison of GraphMap on thin (d710) nodes with other systems

System Settings CC (s) PageRank (sec./iteration) Type

twitter uk-2005 (*uk-2007) twitter uk-2005 (*uk-2007)

GraphMap on Hadoop 21 nodes (21 × 4 = 84 cores,

21 × 12 = 252 GB RAM)

319 695 83 46 Out-of-core

Hama on Hadoop 21 nodes (21 × 4 = 84 cores,

21 × 12 = 252 GB RAM)

Fail Fail Fail Fail In-memory

GraphX on Spark 16 nodes (16 × 8 = 128 cores,

16 × 68 = 1088 GB RAM)

251 800* 21 23* In-memory

GraphLab 2.2 (PowerGraph) 16 nodes (16 × 8 = 128 cores,

16 × 68 = 1088 GB RAM)

244 714* 12 42* In-memory

Giraph 1.1 on Hadoop 16 nodes (16 × 8 = 128 cores,

16 × 68 = 1088 GB RAM)

200 Fail* 30 62* In-memory

Giraph++ on Hadoop 10 nodes (10 × 8 = 80 cores,

10 × 32 = 320 GB RAM)

No result reported 723 No result reported 89 In-memory

Chaos 15 nodes (15 × 12 = 180 cores,

15 × 48 = 720 GB RAM)

No result reported No result reported 470 No result reported Out-of-core

GraphD 16 nodes (16 × 4 = 64 cores,

16 × 8 = 128 GB RAM)

No result reported No result reported 46 No result reported Out-of-core

1 3

GraphMap: scalable iterative graph processing using NoSQL

power. For instance, Giraph, GraphLab, and GraphX were evaluated on an aggregate

memory of 1 TB and 128 cores whereas GraphMap was tested using 84 cores on

256 GB RAM. In case of CC, GraphMap’s performance is comparable to that of the

other frameworks even while using fewer resources than the rest. In case of the uk

dataset, GraphMap is even faster than some of the others. GraphMap demonstrates

competitive performance by effectively accessing disk through a set of optimization

techniques such as the dynamic disk access scheme and worker-partition coloca-

tion. In case of PageRank, the difference in execution times is more noticeable since

GraphMap has to read all vertex blocks from disk at every iteration while using

fewer cores than the rest. Note that Chaos takes significantly longer than GraphMap

since it admittedly performs well only on high-speed networks, whereas all experi-

ments reported on Table 9 were performed on 1 Gbps links. GraphD is a newest

out-of-core graph processing system. Unlike GraphMap, GraphD is not built atop

general-purpose tools such as HDFS and HBase and hence it does not have to incur

the performance costs that come with them due to several important features such

as fault tolerance. Moreover, GraphD is programmed in C++, which automatically

puts GraphMap at a disadvantage since it is programmed in Java that can be 2–3

times slower than C++ [11]. These results and observations exhibit the efficacy of

GraphMap in iterative processing of large datasets on constrained environments.

8 Conclusion

In this work, we present GraphMap, a distributed iterative framework capable of

processing large graphs on a small cluster by effectively utilizing secondary stor-

age through access locality-optimized techniques. This paper makes the following

contributions. Firstly, we propose a clean separation of storage between mutable and

immutable graph data during the lifetime of the computation. With this approach,

we can optimize the storage scheme to exploit the access locality in graphs thereby

increasing sequential rather than random disk I/O. Secondly, we present a two-level

graph data partitioning scheme (inter-worker and intra-worker partitioning) for

locality-optimized data placement and balanced workloads. Moreover, we introduce

a collection of optimization techniques based on the access locality to improve I/O

performance and execution time. Lastly, we demonstrate GraphMap’s performance

through a comprehensive set of experiments and establish that it even outperforms

distributed in-memory graph processing frameworks for several classes of graph

algorithms.

Acknowledgements Funding was provided by Louisiana Board of Regents (Grant No. LEQSF(2016-

19)-RD-A-08) and National Science Foundation (Grant No. IBSS-L-1620451 and RAPID-1762600).

References

 1. Apache Giraph. http://girap h.apach e.org/. Accessed 12 Mar 2019

 2. Apache Hama. https ://hama.apach e.org/. Accessed 12 Mar 2019

 S. Goswami et al.

1 3

 3. Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks:

membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD’06. ACM, New York, NY, USA, pp

44–54. https ://doi.org/10.1145/11504 02.11504 12

 4. Boldi P, Vigna S (2004) The WebGraph framework I: compression techniques. In: Proceedings of

the Thirteenth International World Wide Web Conference (WWW 2004). ACM Press, Manhattan,

USA, pp 595–601

 5. Bu Y, Borkar V, Jia J, Carey MJ, Condie T (2014) Pregelix: Big(Ger) graph analytics on a dataflow

engine. Proc VLDB Endow 8(2):161–172

 6. Facebook Reports Third Quarter 2019 Results. https ://inves tor.fb.com/inves tor-news/press -relea se-

detai ls/2019/Faceb ook-Repor ts-Third -Quart er-2019-Resul ts/defau lt.aspx. Accessed 12 Mar 2019

 7. Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C (2012) PowerGraph: distributed graph-parallel

computation on natural graphs. In: Proceedings of the 10th USENIX Conference on Operating Sys-

tems Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA, pp 17–30.

http://dl.acm.org/citat ion.cfm?id=23878 80.23878 83. Accessed 12 Mar 2019

 8. Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I (2014) GraphX: graph process-

ing in a distributed dataflow framework. In: Proceedings of the 11th USENIX Conference on Oper-

ating Systems Design and Implementation (OSDI’14). USENIX Association, Berkeley, CA, USA,

pp 599–613. http://dl.acm.org/citat ion.cfm?id=26850 48.26850 96. Accessed 12 Mar 2019

 9. Goswami S, Das AK, Płatania R, Lee K, Park SJ (2016) Lazer: Distributed memory-efficient assem-

bly of large-scale genomes. In: 2016 IEEE International Conference on Big Data (Big Data), pp

1171–1181. https ://doi.org/10.1109/BigDa ta.2016.78407 21

 10. Han WS, Lee S, Park K, Lee JH, Kim MS, Kim J, Yu H (2013) TurboGraph: a fast parallel graph

engine handling billion-scale graphs in a single PC. In: Proceedings of the 19th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD’13). ACM, New York,

NY, USA, pp 77–85. https ://doi.org/10.1145/24875 75.24875 81

 11. Hundt R (2011) Loop recognition in C++/Java/go/scala. Proc Scala Days 2011:38

 12. Jia Z, Kwon Y, Shipman G, McCormick P, Erez M, Aiken A (2017) A distributed multi-GPU sys-

tem for fast graph processing. Proc VLDB Endow 11(3):297–310

 13. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM J Sci Comput 20(1):359–392. https ://doi.org/10.1137/S1064 82759 52879 97

 14. Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media? In: Pro-

ceedings of the 19th International Conference on World Wide Web, WWW’10. ACM, New York,

NY, USA, pp 591–600. https ://doi.org/10.1145/17726 90.17727 51

 15. Kyrola A, Blelloch G, Guestrin C (2012) GraphChi: large-scale graph computation on just a PC.

In: Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementa-

tion, OSDI’12. USENIX Association, Berkeley, CA, USA, pp 31–46. http://dl.acm.org/citat ion.

cfm?id=23878 80.23878 84

 16. Lee K, Liu L (2013) Scaling queries over Big RDF graphs with semantic hash partitioning. Proc

VLDB Endow 6(14):1894–1905

 17. Lee K, Liu L, Schwan K, Pu C, Zhang Q, Zhou Y, Yigitoglu E, Yuan P (2015) Scaling iterative

graph computations with GraphMap. In: SC15: International Conference for High Performance

Computing, Networking, Storage and Analysis, pp 1–12. https ://doi.org/10.1145/28075 91.28076 04

 18. Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diam-

eters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Con-

ference on Knowledge Discovery in Data Mining (KDD’05). ACM, New York, NY, USA, pp 177–

187. https ://doi.org/10.1145/10818 70.10818 93

 19. Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012) Distributed GraphLab:

a framework for machine learning and data mining in the cloud. Proc VLDB Endow 5(8):716–727

 20. Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T (2017) Mosaic: processing a trillion-edge

graph on a single machine. In: Proceedings of the Twelfth European Conference on Computer Sys-

tems, EuroSys’17. ACM, New York, NY, USA, pp 527–543. https ://doi.org/10.1145/30641 76.30641

91

 21. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a

system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data (SIGMOD’10). ACM, New York, NY, USA, pp 135–146. https

://doi.org/10.1145/18071 67.18071 84

1 3

GraphMap: scalable iterative graph processing using NoSQL

 22. Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and analy-

sis of online social networks. In: Proceedings of the 5th ACM/Usenix Internet Measurement Confer-

ence (IMC’07), San Diego, CA

 23. Pan Y, Wang Y, Wu Y, Yang C, Owens JD (2017) Multi-GPU graph analytics. In: 2017 IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS). IEEE, pp 479–490

 24. Roy A, Bindschaedler L, Malicevic J, Zwaenepoel W (2015) Chaos: scale-out graph processing

from secondary storage. In: Proceedings of the 25th Symposium on Operating Systems Principles.

ACM, pp 410–424

 25. Roy A, Mihailovic I, Zwaenepoel W (2013) X-Stream: edge-centric graph processing using stream-

ing partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-

ciples (SOSP’13). ACM, New York, NY, USA, pp 472–488. https ://doi.org/10.1145/25173 49.25227

40

 26. Shao B, Wang H, Li Y (2013) Trinity: a distributed graph engine on a memory cloud. In: Proceed-

ings of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD’13).

ACM, New York, NY, USA, pp 505–516. https ://doi.org/10.1145/24636 76.24677 99

 27. Tian Y, Balmin A, Corsten SA, Tatikonda S, McPherson J (2013) From “think like a vertex” to

“think like a graph. Proc VLDB Endow 7(3):193–204

 28. Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111. https

://doi.org/10.1145/79173 .79181

 29. White B, Lepreau J, Stoller L, Ricci R, Guruprasad S, Newbold M, Hibler M, Barb C, Joglekar A

(2002) An integrated experimental environment for distributed systems and networks. In: Proceed-

ings of the 5th Symposium on Operating Systems Design and implementation (OSDI’02). ACM,

New York, NY, USA, pp 255–270. https ://doi.org/10.1145/10602 89.10603 13

 30. Yan D, Huang Y, Liu M, Chen H, Cheng J, Wu H, Zhang C (2018) Graphd: distributed vertex-

centric graph processing beyond the memory limit. IEEE Trans Parallel Distrib Syst 29(1):99–114

 31. Yuan P, Zhang W, Xie C, Jin H, Liu L, Lee K (2014) Fast iterative graph computation: a path cen-

tric approach. In: Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’14). IEEE Press, Piscataway, NJ, USA, pp 401–412. https ://

doi.org/10.1109/SC.2014.38

 32. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn

graphs. Genome Res 18(5):821–829

 33. Zhang Y, Liao X, Jin H, He B, Liu H, Gu L (2019) Digraph: an efficient path-based iterative

directed graph processing system on multiple GPUs. In: Proceedings of the Twenty-Fourth Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems.

ACM, pp 601–614

 34. Zheng D, Mhembere D, Burns R, Vogelstein J, Priebe CE, Szalay AS (2015) FlashGraph: process-

ing billion-node graphs on an array of commodity SSDs. In: 13th USENIX Conference on File and

Storage Technologies (FAST 15). USENIX Association, Santa Clara, CA, pp 45–58. https ://www.

useni x.org/confe rence /fast1 5/techn ical-sessi ons/prese ntati on/zheng . Accessed 12 Mar 2019

 35. Zhou Y, Liu L, Lee K, Zhang Q (2015) Graphtwist: fast iterative graph computation with two-tier

optimizations. Proc VLDB Endow 8(11):1262–1273. https ://doi.org/10.14778 /28099 74.28099 87

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

